Materials for Aeronautical Structures

Reason and Rules for Material Change

by

Michele Iannone
Alenia Aermacchi

Bruxelles, May 14th 2014
ALENIA AERMACCHI PRESENTATION
Finmeccanica is Italy’s leading industrial group in the high technology sector and ranks among the top ten global players in aerospace, defence and security. The Finmeccanica Group focuses on three strategic sectors - Helicopters, Defence Electronics and Security and Aeronautics - in which it generates 75% of its revenues and 73% of its orders and employs 74% of its staff. Finmeccanica is Europe’s leading defence systems company and is well positioned at international level, and has a strong presence in the space sector, where it has the leadership in the satellite services market. Furthermore, the group has substantial expertise and a well-established position on the global transport and power generation markets.

<table>
<thead>
<tr>
<th>Sector</th>
<th>2012 Revenues (EUR million)</th>
<th>20112 Orders (EUR million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicopters</td>
<td>4.243</td>
<td>4.013</td>
</tr>
<tr>
<td>Defence and Security Electronics</td>
<td>5.754</td>
<td>5.136</td>
</tr>
<tr>
<td>Aeronautics</td>
<td>2.974</td>
<td>3.169</td>
</tr>
<tr>
<td>Space</td>
<td>1.053</td>
<td>866</td>
</tr>
<tr>
<td>Defence Systems</td>
<td>1.256</td>
<td>1.005</td>
</tr>
<tr>
<td>Energy</td>
<td>715</td>
<td>834</td>
</tr>
<tr>
<td>Trasportation</td>
<td>1.719</td>
<td>2.290</td>
</tr>
<tr>
<td>Finmeccanica*</td>
<td>17.218</td>
<td>16.703</td>
</tr>
</tbody>
</table>

* Total figures consider revenues from other activities and elisions
Alenia Aermacchi: one company, a hundred-year history

Alenia Aermacchi, a Finmeccanica Company, is the Italian leader in the aviation industry and one among the world’s top players in the civil and military aircraft designing, developing, manufacturing and servicing as well as in training and unmanned aircraft. In virtue of its consolidated experience in processing advanced materials, it covers primary roles in the most important aeronautical programmes manufacturing complex aerostructures.

On January the 1st, 2012 Alenia Aeronautica and Aermacchi merged into Alenia Aermacchi, gathering in one industrial environment an extraordinary heritage of knowledge, technologies and experience gained in one hundred years of activities of companies such as Aeritalia, Fiat Aviazione, Macchi, Romeo and SIAI Marchetti, who wrote the history of the Italian aviation industry. Since 1913 to 2013, almost 30.000 airplanes have flown from their workshops.
Evolution of the Italian aviation industry
Centering around workshops

9 production sites structured in “Integrated Production Centres”.

- Military Operations Centre\Defence Aircrafts (Torino, Caselle, Cameri)
- Training Systems (Venegono Superiore)
- Civilian Operations Centre (Pomigliano d’Arco)
- Metal Aerostructures (Nola)
- Airlifters (Napoli)
- Composites\DG Boeing (Foggia and Monteiasi Grottaglie)

Total headcount: 11,159 persons
Lines of business
Combat aircraft

Eurofighter Typhoon
Supersonic single/two-seat fighter, twin engined multirole fighter

Partners: Alenia Aermacchi (21%), Cassidian (46%), BAE Systems (33%)

Alenia Aermacchi Responsibilities:
- Final Assembly and Acceptance Flights for ITAF aircraft.

F-35 Joint Strike Fighter Lightning II
Supersonic single seat, single-engined, ground attack aircraft

Alenia Aermacchi Responsibilities: National program leader for
- Strategic second source for production and complete wings
- Final assembly and flight test for Italy and other European countries
- European maintenance, repair, overhaul and upgrading facility (MRO&U)
 (For all F-35 operating in Europe)

ORDERS

<table>
<thead>
<tr>
<th>Country/Triple</th>
<th>Tranche 1 Deliveries</th>
<th>Tranche 2 Deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK/Italy/Germany/Spain</td>
<td>472</td>
<td>207 (through Jan. 2013)</td>
</tr>
<tr>
<td>Austria</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Oman</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Potential export sales: 250

Development phase: 2002-2016

Production phase: 2009-2033
The company is a world leader in the design, production and support of military training aircraft and offers the largest range of products that meet the requirements of all training phases from primary to jet-powered basic, advanced and lead-in fighter trainers. These include the M-346, the only all-new European LIFT, the MB-339 flown by the Italian Air Force “Frecce Tricolori” aerobatic team, the M-345 basic-advanced trainer and the screener/basic SF-260 familiy.

The M-346, conceived to train the pilots of the latest combat aircraft, can cover all advanced and pre-operational training phases. This allows the M-346 to reduce the training hours flown on more expensive operational types.

It is also equipped with:

• Fully digital instrumentation: two Head-Up Displays (HUD), six Multi-Function Displays (MFD)
• Main mission controls integrated in throttles and stick (HOTAS)
• Software of on-board simulation of operational scenarios
• Provision for in-flight refueling
• Nine external hard points capable of 3,000 kg overall

ORDERS

<table>
<thead>
<tr>
<th>Country</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>6</td>
</tr>
<tr>
<td>Singapore</td>
<td>12</td>
</tr>
<tr>
<td>Israel</td>
<td>30</td>
</tr>
</tbody>
</table>

Deliveries:
Italy (2)
Singapore (3)
(Jan. 2013)
Integrated Training Systems (ITS)

Alenia Aermacchi has the capability to design and deliver complete Integrated Training Systems optimized for the different phases of the training syllabus, including suitable aircraft, Ground Based Training System (GBTS) and related Integrated Logistic Support (ILS).

The Company offers the broadest range of aircraft types for all training phases from Screening (SF-260) through Basic (M-345) and up to Advanced/LIFT (M-346). The Ground Based Training System includes the Academic Training System, Simulation Based Training, Flight Training Device and Full Mission Simulator. Mission Support and Training Management Information systems are also available to complement the ITS.
Airlifters

C-27J Spartan - the only true tactical airlifter on the market

Extraordinarily strong, robust in hostile environments, reliable and maneuverable. Ordered by the United States in 2007, under the Joint Cargo Aircraft program.

Deliveries:
Italian Air Force (12/12)
Greek Air Force (8/8)
Bulgarian Air Force (3/3)
Lithuanian Air Force (3/3)
Romanian Air Force (5/7)
US Army and Air Force (15/38)
Moroccan Air Force (4/4)
Mexican Air Force (4/4)
Australian Air Force (0/10)
African Customer restricted (0/2)
Special Versions

ATR 42 MP Surveyor
Based on the ATR 42 turboprop platform, the aircraft is equipped with radar and optical sensors. Developed for surface vessel search and identification, coastal water surveillance and protection, search and rescue (SAR), monitoring and identification of marine pollution. Specific kits allow for easy reconfiguration to carry passengers, troops, paratroopers or cargo, for medical and humanitarian evacuation.

Deliveries:
- Italian Treasury Police (4/4)
- Italian Coast Guard (3/3)
- Nigerian Air Force (2/2)
- Libyan General Security (1/1)

ATR 72 MP
Based on the stretched ATR variant. The aircraft is capable of performing similar duties of the ATR 42 MP but at longer ranges and with greater payload. Thanks to its self-protection and ESM systems, it can also perform ELINT missions and operate in hostile areas. The advanced communications system simplifies information relay, making the ATR 72 MP an effective “force multiplier”.

Orders: Italian Ministry of Defence (4)
Regional aircraft

ATR – 42 and 72

Alenia Aermacchi designed and builds the complete fuselage and empennage. 2009 saw the first flight of the new - 600 variant, which offers improved performance and an even quieter and more comfortable cabin.

<table>
<thead>
<tr>
<th>ATR 42</th>
<th>ATR 72</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orders:</td>
<td>437</td>
<td>817</td>
</tr>
<tr>
<td>Deliveries:</td>
<td>422</td>
<td>611</td>
</tr>
</tbody>
</table>

(through Dec. 2012)

Sukhoi Superjet 100

Developed and manufactured by Sukhoi Civil Aircraft Corp. (SCAC) in partnership with Alenia Aermacchi, this is the most important commercial aeronautical programme between Europe and the Russian Federation. The 95-seat baseline has been already certificated by Russian Certification Authority IAC AR and by EASA. A 115-120 seat variant is being studied. In 2011 the SSJ100 VIP version has been launched.

Orders: 179
Deliveries: 13
(through Jan. 2013)
Unmanned aircraft (UAS/UAV)

Sky-X - Technology demonstrator for system development and automated mission management
- First UAS in Europe in the over one ton class to fly successfully
- Performance comparable to a subsonic fighter
- Automated join-up and formation flight in May-June 2008
 - First flight: May 2005

Sky-Y - Technology demonstrator for a civil and military surveillance UAV
- Conceived for medium altitude and long endurance operations (MALE)
- All-composite structure
- All-electric systems
- Automotive-derived diesel engine with 14 hour maximum endurance
- Datalink and advanced sensor package
- First flight: June 2007

Neuron - The largest European aerospace research project
The program covers the design, development, production and flight test of a UAV with low radar and infrared signature, capable of autonomous flight and armament launch.
Alenia Aermacchi is specifically responsible for:
- Electrical generation and distribution system
- Air data system
- Bomb bay doors and mechanisms and “smart” bomb bay
- Alenia Aermacchi is the first partner after Dassault (France). Other participants are SAAB, EADS-CASA, HAI and RUAG.
 - First flight: September 2012
Upgrades and updatings

G222/C-27A - The G222 medium twin turboprop airlifter flew in 1970 and over 100 were built. Alenia will continue to support some 30 G222 for the next 10-15 years.

Tornado - Alenia Aermacchi developed and carried out the mid-life update (MLU) programme for the ITAF Tornado multirole combat aircraft. A partner of EADS and BAE SYSTEMS in Tornado since programme launch, Alenia Aermacchi originally assembled 99 aircraft for Italy and later converted a number to ECR (Electronic Combat Reconnaissance) configuration.

AMX - The ITAF ACOL programme to improve the logistic and operational capabilities of 52 AMX attack and reconnaissance aircraft is nearing completion. Alenia Aermacchi is the prime contractor with a 72% share the other 28% is held by Embraer of Brazil.
Aerostructures

Boeing:
787 Dreamliner – Alenia is a Boeing “Strategic partner”, with a 14% share of the airframe. It makes the horizontal stabilizer and fuselage sections 44 and 46.
- **First flight:** 2009 / **First delivery:** 2011
- Alenia Aermacchi deliveries to Boeing: 124 fuselage shipsets – 107 Horizontal Stab. shipsets
- Boeing deliveries to Airlines: 49 a/c (through Jan. 2013)
- **767** – Alenia builds fin, rudder, elevators, spoilers, flaps, ailerons, slats, wing tips, radome
- **Deliveries:** 1,053 shipsets (through Jan. 2013)
- **777** – Alenia supplies outboard flaps and radome
- **Deliveries:** 1,050 shipsets (through Jan. 2013)

Airbus:
- **A380** – Alenia designed and builds about 4% of the fuselage.
- **Deliveries:** 135 shipsets (through Jan. 2013)
- **A321** – Alenia builds fuselage section 14/A
- **Deliveries:** 813 shipsets (through Jan. 2013)

ATR 42-72 – Alenia Aermacchi designed and builds the entire fuselage and empennages of the most widespread regional aircraft. **Deliveries:** 1,033 (through Jan. 2013)

Bombardier Cseries:
- Alenia Aermacchi will design, develop, industrialize and build significant structural components of the new Bombardier Cseries regional jet in two versions: CS100 / 130 seat and CS300 / 150 seat.
- **First flight:** beginning 2013
- **Orders:** 138 (66 CS100 / 72 CS300) + 124 options (through Dec. 2012)

Dassault:
- **Falcon 2000 EX new version** - T5 fuselage section, baggage compartment door
- **Deliveries:** 533 shipsets (through Jan. 2013)
Integrated and Tailored LifeCycle Support Solutions

A wide array of support solutions to meet Customers’ operational needs

Proactive organization committed to providing tailored solutions

“Through Life Support” to maximize readiness and optimize lifecycle costs

INITIAL LOGISTIC SUPPORT
- Customized recommendations and Initial Provisioning
- Ground support equipment (GSE)
- Technical publications
- Type rating training
- Simulators and training aids
- Field service representatives

“TURN-KEY” SUPPORT
- Integrated lifecycle support solutions
- Prompt availability of spares (on-site stocks, pool access)
- Turn-Key solutions to maximize operational readiness of aircraft

“FOLLOW-ON” SUPPORT
- Reprovisioning and maintaining of stock levels
- Remote technical assistance
- Airframe repairs and components overhaul
- Line support
- Technical publications revision service
- Recurrent training activities

SIMULATION AND TRAINING
- State-of-the-art flight training devices and advanced simulation systems to meet the latest qualification standards and any operational training requirement

through Life Support to maximize readiness and optimize lifecycle costs
Materials for aircraft structures

-Metallic
 - Aluminum Alloys
 - Titanium Alloys
 - Steels

-Composites
 - Polymer based
 - thermoset or thermoplastic matrix
 - carbon, glass, aramidic reinforcement
 - Metal matrix
Material Requirements for Aircraft Structures Certification

Repeatability and Reliability

Different batches of material must show properties which don’t change above a controlled level of variability. Design properties are evaluated taking in account the statistical variability (due to raw material properties and process factors variability) as well as all the other factors which can affect them (e.g. temperature, service damage, etc.)
Material Requirements for Aircraft Structures—cont’d

Typical Documents Controlling the Material Properties

Material Specification

Process Specification

Design Allowables
Aircraft Structures Certification Material Requirements – contn’d

Material Specification

Document aimed to control all the material properties critical for the application, specifying the procedure to guarantee them, including the quality control documentation and test procedure. It typically includes the procedure for material qualification (mandatory). All the qualified materials are listed in a document (Qualified Product List - QPL) which is a specification attachment.
Aircraft Structures Certification Material Requirements – contn’d

Process Specification

Document aimed to standardize the process, in order to guarantee the properties of the produced parts. All the process parameters values during the process are specified. Also the characteristics of the process facilities are described, as well as the quality control requirements.

Process specification requires qualified processors and plants.
Aircraft Structures Certification Material Requirements – contn’d

Design Allowables

Design Allowables are the material properties used in the design of the structural parts. They must take in account: variability of the properties batch to batch, variability of the process parameters, environmental effects on the mechanical properties, damage and fatigue effects.
Raw materials for aeronautical structural applications can be generally critical for availability of qualified sources more than for basic availability.

Examples:

Aluminum
Titanium
Composites
Aluminum and Titanium

Few qualified producers (two or three) of intermediate parts (extruded, sheets, plates, forgings) suitable for aeronautical applications.
Composites (epoxy matrix and carbon fiber reinforcement)

Most of the aeronautical structures are based on prepregs
Prepreg tape: parallel fibers impregnated in a not cured polymeric matrix
Fabric Prepregs - Woven Fiber Yarns impregnated in a not cured polymeric matrix

Plain weave Twill weave Five-harness satin
Aircraft Structures Certification Requirements

The structural reliability of the structure must be demonstrated on the basis of:

Material Design Allowables developed for material qualified per a material specification and processed for a process specification

Design allowables developed with a scale-up approach (coupons, details, subcomponents, components)
Design allowables developed with a scale-up approach (coupons, details, subcomponents, components)
Aircraft Structures Certification Requirements (cont’d)

Each change in the materials requires a re-certification
Reasons for change

Potential criticality of the material source (composites):

Availability of matrix components (thermosets) or availability of matrix polymer (thermoplastics):

Basic resin, hardener, catalizer, additional resins

Availability of fiber precursors:

Availability of process thermal degradation:

Availability of qualified prepregging process
Reason for change

Potential criticality of the material source (metals):

Availability of qualified alloys

Availability of alloys as sheet, plates, extrusions, forgings
Reason for change

Potential improvement of the materials:

Best properties
 Mechanical properties
 Durability
 Functional properties (thermal/electrical conductivity, damping, etc.)

Lower cost

Best environmental affordability
Possible changes (composites)

Change in the matrix compositions (components, addition of nanoparticles)

Change of the matrix nature (thermoset, thermoplastic)

Change in the fibers

New processing methods (out of autoclave, etc.)
Needed solution:

European availability of qualified supplier

Fostering conditions:

Technology availability

Marketing factors
Thanks for your attention